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Abstract. Using a standard tight-binding model, the dependence of the localisa- 
tion length 5 on a perpendicular magnetic field in quasi-one-dimensional systems is 
investigated. A well known numerical method is used to calculate t,he localisation 
length as a function of the number of flux quanta per unit cell CY and other system 
parameters. An attempt to explain the  CY) curves perturbat,ively yields qualitative 
agreement and corrects the earlier results for 6 as a function of energy and disorder 
W in the limit of large W obtained by similar techniques. Finally, the Lloyd model 
is re-examined with a magnetic field included. Previous claims of an exact solution 
for the Lloyd model for B = 0 have been attacked but, we believe, not rigorously 
defeated. We hope to rehabilitate the Lloyd model by demonstrating its abilities in 
the magnetic field. 

1. Introduction 

A common approach to  the localisation problein in two or three dimensions is based on 
finite size scaling and strip geometry [l-31. Apart from a few details, there is general 
agreement about what can be expected from this method and how to judge the data 
obtained so far. But with a magnetic field included, there has been no systematic 
investigation of the whole parameter space (made up of the energy, the disorder, 
the magnetic field, the topological 29 parameter-see section 2-and the system size), 
which would justify a concluding statement about universality (cf [4]) for the unitary 
case. Even for the orthogonal case, this question is still open [SI. There have been, 
however, examinations of scaling and the mobility edge problem for a fixed magnetic 
field, like those of Schweitzer e t  a1 [GI or Ando [7]. 

We took this as a motivation to  examine systematically the field dependence of 
localisation lengths in quantum Hall systems. This was done numerically by applying 
a method introduced by Pichard [l, 21 which will be briefly reviewed in the following 
section. For our present purposes, the numerical results are used merely to check the 
analytical ones. It is possible, however, to go further and calculate the critical ex- 
ponents of the localisation length from the data and investigate the above-mentioned 
hypothesis of universality in the localisation problem which has been questioned re- 
cently by MacKinnon [5]. Results on that will be published elsewhere. 

Two attempts to  get a glimpse of real understanding of what is seen numerically (a 
perturbative and a non-perturbative one) based on the previous analytic B = 0 work 
of Johnston and Kunz [SI 91 follow i n  sections 3 and 4. Their results are generalised to 
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7124 U Fastenrath 

include a non-zero magnetic field and an error which makes their perturba.tive results 
disagree with the numerical ones is removed from their calculation, 

2. Numerical results 

Our model Hamiltonian 

N I  

+ exp[2ai(ai + 29)] I i z  + l)(iz I + exp[-2ni(ai + d ) ]  I i z  - l ) ( i z  I )  
(1) 

incorporates the magnetic field via periodic Peierls factors (29 labelling non-equivalent 
representions of the translation group in a 2D system with simple periodic boundary 
conditions) and diagonal disorder via matrix elements taken from a box distribution 
of width W .  Indices i, j ,  k, . . ., run along the strip axis (1,. . . , N ,  N -. CO);  indices 
2, y, z ,  . . ., denote the I sites in each cross section. As usual, we employ the transfer 

F 

matrix representation 

U N  = T(N)uO 

of Schrodinger's equation for the 2D strip with 

U ,  = ($(n  + 1, l),  . . . 1 $(?I + 1, I ) ,  +(?I, 11,. ' .  1 $(n,  0) 

and 

P, = 

E - E: - (J (a) ) - '  0 . . .  0 -( J(a) ) - '  
- J ( a )  E - E ;  - ( J ( a ) ) - l  . . .  0 0 
0 - J ( a )  E - E ;  . . .  0 0 

0 0 . . .  E -&;e1 - (J (a) ) - l  
- - ( J ( 4 ) - - l  0 . . .  -(.I(&))-' E - E: 

(4) 

with J ( a )  = exp[2ni(an + d) ]  and ( J ( a ) ) - l  = exp[-2A(an + d)], to define the 
localisation length E,(E, W ,  B )  by the Lyapunov exponent of the smallest modulus 71 

(5) - -1 
I - 71 

of the limiting matrix 

I= N'CU lim (T(N)T+(N))+~ (6) 

the existence of which is guaranteed by Oseledec's famous theorem [lo] .  
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An alternative approach frequently used by Kramer et a1 (e.g. [GI) is to define the 
localisation length by the off-diagonal Green function ( ( lz  I G ( z )  1 Ny)),, which can 
be calculated recursively. This yields the density of states as a useful by-product, but 
only y1 from all the Lyapunov exponents. To check a certain result of the analytic 
treatment of the Lloyd model, however, we need the sum of all exponents which we 
obtain by a method first introduced by Pichard [l,  21: Oseledec's theorem ena.bles us 
t o  calculate yk from 

if the starting vector U is taken from the eigenspace v k  of exp(yk). However, this 
cannot directly be used to  calculate 7s numerically, because we require N to  be about 
2 x lo5 to  keep the statistical error 

below 1%. Tha t  is, matrix elements of T ( N )  will become as large as about 
( W / J ) ( 2 x  lo5) where J is the nearest-neighbour hopping matrix element. In order 
t o  avoid overflow errors occurring during the calculation, we change coordinates after 
about every fifth iteration by using 

where 

and 

In other words: we orthonormalise the columns of T(k), so that the first column 
develops freely yielding the largest Lyapunov exponent, the second grows everywhere 
but in the direction of V, thus yielding the next largest exponent etc. Therefore 
the columns of T ( N )  will point into t8he eigendirections of 7a f t8e r  t,he it,era.tion has 
converged. 

Furthermore, as we are allowed to calculate 

instead of (7), denoting the product of n transfer matrices after m. t,ransformations of 
the type (9) by T(m)(n) ,  we obtain the Y~ after expanding the telescope fraction in 
(12) by accumulating the relative growt,h of each column Bk: 
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Let us first look a t  the raw data for [ , (a) .  Fixing 1 = 3 (this is comparatively small 
but taking this value we save considerable computer time since [ ( a )  looks qualitatively 
the same for all /-as can be checked by a few points for large systems) and varying 
W as a parameter, we get figure 1. The numerical method becomes unreliable for 
cy < (the hopping matrix elements of (1) will not be sampled properly unless 
cyN > 1) or for as oforder unity (the discretised model breaks down when the magnetic 
length = starts to approach the discretisation length). So what we see is a 
localisation length which remains constant over some three orders of magnitude of a ,  
starting a t  a = and increases quadratically for very high fields (m = lo-*, see 
figure 4). 

~ 0"- 0 0 .ms- 

vl 1 mom- , , , , , , , , , , , , , , , , , ,  m ODD- "" , , , , , , , , , , , !  
0 D o n m m  W = 8  3 

2 
10-6 lo-' 1 0 - ~  io-' 

field parameter a 
Figure 1. Numerical values for the localisation length as a function of the magnetic 
E-ld, [(cy), with W as a parmieter, for small systems ( 1  = 3) .  

An attempt to  understand these features analytically is put forward in the nest 
section. 

3. Perturbation theory 

A first at tempt to  understand the [(cy) curves analytically relies on an idea of Johnston 
and Kunz [8] who define the localisation length by 

and rewrite (1) as 

to be able to  use a locator expansion in powers of W-' for the off-diagonal Green 
function to  evaluate (14). Unfortunately, their result is not capable of predicting the 
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B:<(W); a=O, E=O, $ = O .  

* 1=3 

01 " 1 '  ' 1 ' ' 1  

disorder W 
200 400 600 800 

Figure 2. ((WJ) for large disorder MJ. The circles are the numerical values for I = 3 
and I = 5 ,  the full curve denotes the perturhative solution and the broken one the 
old result of Johnston and Kunz [8]. 

numerical values even in the limit of very large disorder (see figure 2 ) .  Here we repeat 
their calculation and correct it for d dimensions and a non-vanishing magnetic field. 

We s ta r t  from a locator series of the forin 

for a matrix element ( i z  I G(z)  I by) of G, where we have to sum over all paths ? ( ' I )  

of length n ,  connecting the sites ( i l  x) and (k, g) and consisting of a hopping matrix 
element X J ~ / ~ , , ~ ~ ~ ~  for eacli link and a locator L$ = [(;/Iv/) -&I-' for each site along 
the path.  

For a first try, we keep only the first two non-vanishing orders of (16) which can 
be visualised as in figure 3: they are paths of length N - 1 for the first, and of length 
N + 1 for the  second order. Formally, we write 

with 
N 

T N  = U L ;  
N-1 N 

k = l  i = l  
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(Both the terms of order N + 2 were not given correctly in [8].) Obviously, the 19 
parameter does not influence the localisation length as long as the disorder and strip 
width are large enough to  prevent hopping around the strip with a non-vanishing 
winding number. 

b) 
* - - Y E = . .  .+” ::$L, 
1 N 1 k N 1 k l N  

Figure 3. Three paths contained in the locator series for the resolvant operator 
Gis,ky (top) and the ones of leading order actually used in our expansion (17) (bot- 
tom). 

112 ’ The next step is to  perform the configurational average ni, s-1,2 dr:(. . .). Un- 
fortunately this is technically impossible without, formally expanding the logarithm in 
(14) in powers of X = W - l .  This procedure works for T, and Ti+,: 

1 E $ + E / W  - -111 1 [; - ($1 (21 )  
lim -%(ln x~T,) = In x + 1 + - ~n 

N-co h’ W $ - E / W  2 

1 + E / W  
f - E / W  

but we have to  impose the condition I E/W I <  0.097. . . in order to  keep the series 

1 - I<” N N  ) I< = ( q ( L - 1 )  (22 )  
1 - I< + (1 - Iq(1 - IC-1) k = l  l=k  

emerging during the evaluation of TL+, convergent. Keeping this in mind, we may 
write (20) as 



Investigations of localisation in magnetic fields 

,514 

,512 

,510 

U,. 

3 

8 
a, - 
J ,508 
m 
2 ,508  
m 
8 ,504- 
e 

7129 

- 

- 
- 
- , . 
- 

B:C(a); 1=3. E=O. $=O. W=50. 
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Figure 4. ( ( a )  for W = 50 numerically (top) 
and as calculated perturbatively (bottom). De- 
viations occur mainly in regions of 01, where the 

- 
- 

' ' 1 1 ' 1 ' "  ' """" 1 " " ' 1 "  ' ' 1 ' 1 " "  ' """" ' ' L  numerical method becomes unreliable (cx < 

,.....e . ...I. . . . . .a-  

../ 

Finally, we arrive at the following expression for <,(E, W, B ) :  

- yl (E,  w, B )  = - In w 
2 

- $111 [; - (i) E $ + E / W  
W i - E / W  

+ l + - I n  

where we used the abbreviations 

- _  W l n x [ l  - ( E / W ) A ( x , a ) ]  - ~ ( E / T V ) ( x c o s 2 m  + l n x s i n 2 a a )  - 
E [l - ( E / l i V ) A ( ~ , c r ) ] ~  + [ ( X C O S ~ T ~  + lnzs in2~cu)(E/T/V)]~  

and 

A ( z , a )  = Inzcos2sra - s rs in2aa .  
f + E / W  
2 - E / W  

X =  

(24) 

As can be seen from figure 2, the result reproduces the numerics for large W. But as 
figure 4 tells us we did not reach our ultimate goal: the perturbat,ive localisation length 
describes the  field dependence in tlie numerically reliable region only qualitatively; the 
perturbative error is much larger than  tlie variation of < with B .  

As our problem seems to be well out of reach of perturbation theory, we now turn 
to  the  Lloyd model where some 'exact' methods apply. 
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4. The Lloyd model 

The  Lloyd model, characterised by a Hamiltonian of type (1) and Lorentzian disorder 

was invented by P Lloyd [ll] i n  1969 who was able to calculate exactly the averaged 
single-particle Green function and thereby the density of states. Based on the previous 
work of Herbert and Jones [4], Thouless [la] succeeded in deriving a formula for E l  for 
strictly 1D systems, the so-called HJT formula, 

1 9 112 coshy, = q ~ {  [ (2J  + E)’ + I?-] + [(U - E)’ + r2] ‘Iz} (27) 

Johnston and  Kunz [8] tried to  generalise (27) for quasi-ID systems arriving at 

(28) 

where the minimum is to be taken over all eigenvalues crj of the discretised Laplacian 
in d dimensions. As these are bounded by I ai I <  2(d - l ) ,  (28) predict,s complete 
localisation for arbitrary small disorder and for any spatial dimension which is not 
only non-physical, but also in contradiction wit,li later numerical work by Bulka el a1 
[14] and the author [15]. 

Although Thouless [ l G ]  observed a formal error in an argument about analytic 
continuation by Johnston and Kunz [GI designed to avoid the replica trick, this error 
is not responsible for the discrepancies between (28) and the numerical results. For a 
complete discussion, see [ 151. 

Another weak point, i n  the derivation of (28) seems to be the expansion (16) which 
enters into the calculat,ion u p  to infinit,e orcler. As  we will see later, such an objection 
is unjustified. 

In any case (28) turns out not t80 be as ‘esa.ct.’ as it, is supposed tmo be. The  reason 
for this is not yet understood. 

To investigate the disagreement between (28) and the numerical results, we have 
to re-examine the  analytics, as cutting the Lorentz distribution at R for programming 
purposes only leads to corrections of the order R-’ to I,, but does not produce any 
quasi-extended states on its own. Since the numerical analysis reveals the delocalising 
action of the  magnetic field, we include it in our calculation right from the beginning. 

Again, we start  from formula (14) for t81ie localisation lengt,li. The  avera.ging pro- 
cedure, (cf [8]) yields 

( lnG&(z))  = In ‘G&(z + i r ) .  (29) 
- 

where the  upper left index ’ means E:. - E$ = 0. Equation (29) already relies on 
what Johnston and Kunz [SI call an assumption about analytic continuation which, 
however, can be shown to hold at least for finite strip lengths N (cf [15]). 

In order to calculate OG&(z) we ma.ke use of the identity 
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which follows by a straightforward calculation from the ansatt 

T(N) = ( AN+1 ',tl) . 
A N  BN 

7131 

(cf Or [151)* OAN+l  is easy to calculate for B = 0 (by merely diagonalising the ' T i ) ,  
as in this case 'Ti = 'Tj for all i , j .  For a general a, the product ' T ( N )  is difficult 
to compute, but for rational fields ( a  = p / q )  we have 

i = l  

Thus. it is sufficient to 

O T (  N )  = 

i = g + l  

diagonalise the 'T' to get (oT(N))ll .  Writing ' T ( N )  as 

( 3 3 )  

we get for the eigen-matrix At (which is the only one we need, as transfer matrices 
are symplectic) 

where the eigenvalues of Z,(a) are recursively given by 

being the eigenvalues of OPk(a) (cf (12)) .  
Knowing how to calculate the A*  we can now write 

k 

1 
%-(lnG&(z)) N = l n z U s h  [S,l, ,(X~)N/Q(S-l)ll,k 

" 0 3  1 - - min -% {In A f ( q ) }  

- 71 ( E ,  w B )  = 
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1 

L:C7, (1); a=O, E=O, f i = O .  
1 0 ,  , , , , , , , , , , , , , , , , 

2 2  

. w = o 5  . W = O 6  
0 w = o 7  
0 w = o a  
0 w.09 
0 W = l O  
- theory 

" ' " ' I 8 ' 1 0  

0 2 4 6 8 10 12 14 16 

sys tem width I 

(U being a unitary matrix diagonalising all 'Pk (cy) simultaneously) with 

where the xj and yj denote the real and imaginary parts of Z q , j ( ~ ) ,  respectively. 
To check this, we first plot the sum of all Lyapunov exponents as a function of 

system width 1 and magnetic field cy (figure 5) and compare it with the numerical 
values. The agreement is as good as we would expect it from an 'exact' solution. 

Secondly, we look at  the result for y1 alone. As the solution (39) reduces to (28) 
for (Y = 0,  there is still the prediction of complete localisation for all r # 0,  which 
remains valid for (Y # 0. However, comparing our numerical results for [(cy) for the 
box distribution with the curve resulting from (39), we observe qualitative agreement 
(see figure 6). They could not necessarily be expected to coincide as they belong to  
different probability distributions. The exact correspondence of the extrema seems to  
indicate that our method correctly describes the field dependence of (. Unfortunately, 
we cannot peek into the interesting region of l g a  < -5 as treating qs much greater 
than 200 requires enormous computer effort. 
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B:( (a ) ;  E=O, 4=0, W=4, 1=7. 
I ' l ~ l ' l ' l  

24 

a 

7133 

a 

F i g u r e  6. A comparison of € ( a )  as computed nuineiically for the box distiibutioii 
( top) and analytically for the Lorentz distribution (bottom), where n = p / 9 ,  ievcals 
qualitative agreement between the t WO. 

5. Conclusions 

After all, i t  is possible to  calculate perturbatively the localisation length in the limit 
of large disorder. However, the functional dependence of the localisation length on 
the field parameter CY can be calculated only qualitatively from this expansion, since 
only the second and higher non-vanishing orders are actually field-dependent. So the 
calculation leading to  figure 4 is to be viewed as a first-order approximation. 

An 'exact' solution for the Lloyd model (which has been believed to be incorrect 
for five years) is able to correctly describe the field dependence of E and will perhaps 
be able to  shed some light on the transition from the orthogonal to the unitary case; 
but this question will have to be the subject of further investigation. 
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N o t e  added in proof. When the recursion relation solving the Lloyd model (essentially equations (3.5) 
and (39)) is used to calculate the energy spectra of the localisation length in the I O W  disorder limit, 
the entire magnetic sub-band structure is reproduced in its disorder-broadened veisioii wliich was 
predicted in 1976 by Hofstadter [I71 for rational values of the field parameter a = p / 9 .  Figure A . l  
shows how these sub-bands develop for 9 = 1,. . . ,8. This is another independent check for the 
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Figure A . l .  The localisation length < is plotted as a function of the energy for 
eight values of the field parameter 01 = p / q ,  p = 1, q = 1,. . . ,8 with the disorder 
r as a parameter (r = 0.0.5,0.10,0.15) as calculated from the solution of the Lloyd 
model (equations (35)-(39)). The spectra consist of q disorder-broadened magnetic 
sub-bands as predicted by Hofstadter [17]. 
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reliability of (39) which now seems to be able to generate the correct functions ((z) for all system 
parameters z except the width I .  
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